\(\int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [587]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 37 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {21, 3856, 2719} \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[In]

Int[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(2*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}} \]

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(133\) vs. \(2(59)=118\).

Time = 3.26 (sec) , antiderivative size = 134, normalized size of antiderivative = 3.62

method result size
default \(\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(134\)
risch \(-\frac {i \sqrt {2}\, B}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{\sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}\right ) \sqrt {2}\, B \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}\) \(287\)

[In]

int((B*a+b*B*cos(d*x+c))/(a+cos(d*x+c)*b)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/
2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.59 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(I*sqrt(2)*B*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(2)*B*w
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=B \int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

B*Integral(1/sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((B*a + B*b*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))),x)

[Out]

int((B*a + B*b*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))), x)